Dr. Francesco Berti
30th March 2023, 4:00pm - 5:00pm (GST)
Title: | Authenticity in the presence of Leakage (and Faults) |
Abstract: | One of the goals of modern cryptography is to prevent an adversary from making forgeries. That is, sending a message which the receiver believes valid while not sent by a genuine sender. For "black box" adversaries only able to access the inputs and outputs a cryptographic algorithm, many efficient solutions exist and provide strong mathematical security guarantees. Over the last decade, various research advances have shown that preventing black box attacks is not sufficient. For example, so-called side-channel adversaries can also access physical quantities produced during the cryptographic computations in a passive or active (i.e., injecting faults) way. Thanks to these physical leakages, very efficient forgery attacks can be performed, for example by extracting the long-term cryptographic keys. In this talk, we propose a formal solution to the problem of authenticity in the presence of side-channel leakage. For this purpose, we introduce a new theoretical framework that allows capturing security against side-channel attacks, explain what security we aim for and how we model physical leakages, and then build constructions for which the physical security can be reduced to clear assumptions thanks to rigorous proofs. In particular, our proofs indicate which part of an implementation must be strongly protected against side-channel attacks and which part can leak (sometimes in full) with limited consequences. For example, we show that it is possible to reduce the security of full fledged authentication schemes to standard black box security properties and only requiring strong protections against side-channel attacks for one execution of its underlying cryptographic primitive. Finally, we show how our model can be used to initiate the study a mode-level study of cryptographic primitives that ensure security in the presence of leakage and faults. |
Bio: | Francesco Berti is currently a post-doctoral fellow at Bar-Ilan University (Israel). He is a member of the Selecsys (Secure Electronic Systems), and Enics (Emerging Nanoscaled Integrated Circuits & Systems) Labs, and the Center for Research of Applied Cryptography and Cyber-Security. He works on leakage-resilient cryptography. He got a PhD at UCLouvain (Belgium) and he worked as a post-doc at TU Darmstadt (Germany). |